Received 29 March 2005

Accepted 4 April 2005

Online 9 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiang-Chao Zeng,* Yu-Xia Li, Shi-Hai Xu and Po-Run Liu

Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China

Correspondence e-mail: xczeng@sohu.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.043 wR factor = 0.120 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-Methyl-3-(4-bromo-1*H*-pyrrole-2-carbonyl)aminopropionitrile

The title compound, $C_9H_{10}BrN_3O$, was synthesized by condensation of *N*-methyl-3-aminopropionitrile with 4-bromo-2-trichloroacetylpyrrole, at room temperature, in 87.3% yield. Intermolecular $N-H\cdots O$ hydrogen bonds give rise to dimers of the compound.

Comment

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2001), with some of them exhibiting moderate cytotoxicity towards some cancer cells (Konig *et al.*, 1998). In our search for bioactive compounds, a series of *N*-methyl-3-(1*H*-pyrrole-2-carbonyl)aminopropionitriles has been synthesized by reaction of *N*-methyl-3-aminopropionitrile with derivatives of 2-trichloroacetylpyrrole. We report here the crystal structure of the title compound, (I).

The bond lengths and angles are unexceptional and are in good agreement with corresponding parameters in 3-(4-bromo-1H-pyrrole-2-carboxamido) propanoic acid (Zeng *et al.*, 2005) and bis(2-nitriloethyl)aminoacetonitrile (Gao *et al.*, 2004).

In the crystal structure, there is one intermolecular N– H···O hydrogen bond (Table 1), which forms centrosymmetric dimers (Fig. 2) that can be described as $R_2^2(10)$. These

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids for the non-H atoms are drawn at the 30% probability level.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

View showing the centrosymmetric dimers formed by hydrogen bonds (dashed lines), viewed along the c axis.

Figure 3

The crystal packing. Dashed lines indicate hydrogen bonds.

dimeric units are further assembled into a herringbone pattern in the overall crystal packing (Fig. 3).

Experimental

N-Methyl-3-aminopropionitrile (0.5 ml, 5 mmol) and 4-bromo-2trichloroacetylpyrrole (1.46 g, 5 mmol) were added to acetonitrile (12 ml). The mixture reacted at room temperature for 16 h and was then poured into water; the brown solid product was collected after filtration. The crude product was dissolved in ethanol-hexane (4:1) at room temperature and pressure. Brown crystals suitable for X-ray analysis (m.p. 397 K, 87.3% yield) grew over a period of one week when the solution was exposed to air. ¹H NMR: δ 10.08 (*brs*, 1H), 6.93 (*d*, 1H), 6.60 (*s*, 1H), 3.80 (*t*, 2H), 3.41 (*s*, 3H), 2.72 (*t*, 2H); IR (KBr): 3240, 2930, 2245, 1598, 1546, 1494, 774. Analysis calculated for C₉H₁₀BrN₃O: C 42.21, H 3.94, N 16.41%; found: C 42.28, H 4.02, N 16.59%.

 $D_x = 1.632 \text{ Mg m}^{-3}$

Cell parameters from 863 reflections

Mo $K\alpha$ radiation

 $\theta = 2.6-26.8^{\circ}$

 $\mu = 3.91 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.022$ $\theta_{\rm max} = 27.1^{\circ}$ $h = -11 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -7 \rightarrow 15$

Parallelepiped, brown

 $0.50 \times 0.36 \times 0.28 \text{ mm}$

2262 independent reflections

1741 reflections with $I > 2\sigma(I)$

Crystal data

C ₉ H ₁₀ BrN ₃ O
$M_r = 256.11$
Monoclinic, $P2_1/c$
a = 8.759 (2) Å
b = 10.488 (3) Å
c = 12.080 (3) Å
$\beta = 110.015 \ (5)^{\circ}$
V = 1042.7 (5) Å ³
Z = 4

Data collection

Bruker SMART 1K CCD area-	
detector diffractometer	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Sheldrick,1996)	
$T_{\min} = 0.122, \ T_{\max} = 0.334$	
6363 measured reflections	

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.059P)^2]$
+ 1.0123P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^{i}$	0.86	2.01	2.808 (3)	155
		1		

Symmetry code: (i) -x, -y + 1, -z + 1.

H atoms were positioned geometrically (C-H = 0.97 Å for CH₂, 0.96 Å for CH₃ and 0.93 Å for CH, and N-H = 0.86 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(\text{parent atom}) [U_{iso}(H) =$ $1.5U_{eq}(C9)].$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker,1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The project was supported by the National 863 Program of China (No. 2004AA628030) and the Science and Technology Project of Guangdong Province of China (No. 2004B30101011).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Faulkner, D. J. (2001). Nat. Prod. Rep. 18, 1-49.
- Gao, J., Xu, X. Y., Cheng, Q. F., Yang, X. J., Lu, L. D., Wang, X., Li, Y. Z. & Liu, Y. J. (2004). *Chin. J. Struct. Chem.* 23, 413–416.
- Konig, G. M., Wright, A. D. & Linden. A. (1998). *Planta Med.* 64, 443–447.
 Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
 Zeng, X.-C., Xu, S.-H., Liu, P.-R. & Gu, J. (2005). *Acta Cryst.* E61, o1076– o1078.